
DEVELOPING DECENTRALIZED
APPLICATIONS

Kevin Bluer
Truffle

AGENDA
● Introductions
● Session Goals
● Decentralized Applications (aka DApps) 101
● Introducing the Truffle Suite
● Exploring the DApp Development Lifecycle
● Hands On
● Next Steps & Q&A

ABOUT ME
● Head of Training & Ecosystem

Engineering @ Truffle
● 12+ years in software development

(across a number of paradigms)
● Decentralized FTW

ABOUT YOU
● Heard of Truffle before?
● Used any tools in the Truffle Suite?
● Used Metamask (or an equivalent wallet)?
● Deployed a smart contract to a public network?

SESSION GOALS
● Better understanding of the (decentralized) paradigm
● Appreciation of the development lifecycle
● Demystification of the tools used to build your own DApps

DECENTRALIZED APPLICATIONS 101

KEY CHARACTERISTICS

Often have a shared
governance model (via a

DAO or equivalent) 👩💼

Written using smart contracts
that store both the data and

business logic 📜

Can intrinsically store, or
reference, tangible
digital assets (no
gatekeepers) 🧮

Applications that are
”unstoppable and
uncensorable” 🥊

✨TRUST
Between zero /

semi-trusted parties

DEVELOPMENT CONSIDERATIONS
● New things you’ll now need to consider...

1
USER ID

ENTITY

Fully
 “o

wned” b
y t

he use
r

2
IN

TERACTIO
N / U

X

Transa
cti

on fe
es,

latency
, e

tc

3
GOVERNANCE

Upgradabilit
y, c

olle
cti

ve
ly

owned by u
se

rs

ve
ste

d in
 th

e se
rvi

ce

4
SECURITY / A

UDITS

Now a lo
t m

ore at s
take

5
COST O

F STORAGE

More exp
ensiv

e, o
ther o

ptio
ns

APPLICATION ARCHITECTURE / WEB 2.0 VS WEB 3.0

Business Logic (node.js, ruby,
python, etc)

API

Browser. Mobile App, etc

DB

JSON-RPC

DApp Browser

Web3.js

Business
Logic

(solidity)

Global State

SO WHAT CAN YOU BUILD?

Digital Assets,
Exchanges, etc

● ERC20, ERC721, etc
● No middleman
● Digital twins

Decentralized
Finance

● Transparent
● Programmable
● Accessible

● DAOs
● Immutable identity
● Government 2.0

Gaming

● Supply Chains
● Healthcare
● Gaming
● Efficiency between silos

New Ways of
Operating

Governance &
Identity

✨

● Types of apps and services we’re seeing emerge (not definitive)...

INTRODUCING THE TRUFFLE SUITE

TRUFFLE SUITE OVERVIEW

“Gets developers from idea to
dapp as comfortably as possible”

TRUFFLE SUITE OVERVIEW
● A complete blockchain environment (accounts, node / miners,

programming interface) enabling you to model, build, iterate, etc
● Over 7m aggregate downloads
● OSS @ https://github.com/trufflesuite

https://github.com/trufflesuite

TRUFFLE CLI

🔢
“compile”

Generate all the
artifacts required
to test, deploy, etc

🤝
“test”

Write and run tests
to ensure code

quality

🐞
“debug”

Step through the
txns run against
your contracts

🏁
“migrate"

Deploy contracts to
any EVM-based

network

● Command-line tool that covers the full contract development lifecycle
to make your life easier. Examples commands...

🎁
“unbox"

Download and
setup a Truffle box

GANACHE
● Zero-configuration local blockchain environment
● Built for development (workflow, testing, etc)
● Comes in a number of “delicious” flavors
● Enables the simulation of existing networks (via forking)

TEAMS
● Blockchain operations for everyone
● Built for open source and enterprise
● Features include ganache sandboxes, continuous integration, visual

deployments, contract monitoring, visual debugging, etc
● Designed for the following

○ Developers
○ Operations Management
○ Systems Administrators
○ Product Managers

EXPLORING THE DAPP DEVELOPMENT LIFECYCLE

THE DECENTRALIZED DEVELOPMENT LIFECYCLE

📝
Define Project

Goals, Use Cases

🏗
Architectural /

Technical Design

💻
Development
(and in-house

testing, etc)

🔎
3rd Party Audit

🐞
Bug Bounty

(Gitcoin,
HackerOne, etc)

🏁
Launch

Do I need a blockchain /
decentralized ledger? 🤔

VS MORE “TRADITIONAL” DEVELOPMENT?
● Potentially a lot at stake (e.g. assets of tangible / significant value)

stored within the contracts
● While there are ways to update deployed contracts…

○ You have to have planned for this in advance (updatability patterns)
○ It might already be too late (depending on the vulnerability)

● Likely you’ll want to include some form of decentralized
governance

● Testing and securing need to be factored in from the start

🔐

DEVELOPMENT (AND IN-HOUSE TESTING)
● Added emphasis placed on the following...

○ Documentation
○ Coverage
○ Analysis
○ Linting
○ Process (e.g. freeze before audit)

● Plenty of tools to assist with the above
○ E.g. Truffle, EthLint, MythX, Slither, Manticore

● Wide range of existing 3rd party libraries and frameworks that
can (and should) be leveraged...e.g. OpenZeppelin

🗂

3RD PARTY LIBRARY EXAMPLE: OPENZEPPELIN
● Open: https://openzeppelin.com/contracts
● “OpenZeppelin Contracts helps you minimize risk by using battle-tested

libraries of smart contracts for Ethereum and other blockchains. It
includes the most used implementations of ERC standards.”

● Benefits…save you re-inventing the wheel and...
○ Emphasis on security
○ Modular
○ Strong community

● Contracts types include access control, tokens, crowdsales,
utilities, math, payments, cryptography, etc

https://openzeppelin.com/contracts

SECURITY AUDITS
● Systematic assessment of your code’s security, safety, etc (with a

particular emphasis on identifying subtle vulnerabilities)
● Do you need one?

○ What’s at risk?
○ Relative complexity of code?
○ Ease of recovery from an incident?

● Also an opportunity for the team to...
○ Learn from experts
○ Identify gaps in process

● Phases
○ Initial audit (1-4 weeks)
○ Mitigations (2-3 weeks)

BUG BOUNTIES 🐞
● “Bounties are offered to developers in exchange for their expertise in

resolving bugs and disclosing security vulnerabilities.”
● Popular Bug Bounty platforms…

○ HackerOne
○ Gitcoin

● Submit code to repo / deployed contracts to a Testnet

HANDS ON

HANDS ON
● Installation
● Hello World
● Truffle Boxes
● MetaCoin

HANDS ON - HELLO WORLD
● What?

○ A simple Dapp that facilitates the storage of a string (“Hello World”) on-chain
○ Subsequent retrieval (setter) and updating (getter) of that string

● Note
○ Slides are provided if you want to follow along after the lecture

HANDS ON - INSTALLING TRUFFLE CLI

EXERCISE - INSTALLING TRUFFLE CLI
● Install Node.js (https://nodejs.org)

○ Install using NVM if you want to switch Node.js version
○ Ideally we want lts/dubnium (although lts/erbium should now be all good too)

● Install Truffle globally using NPM

> npm install -g truffle
...
> truffle version

https://nodejs.org

HANDS ON - DAPP HELLO WORLD WITH TRUFFLE

EXERCISE - CREATE A PROJECT
● Create and enter your project directory

> mkdir truffle-hello-world
> cd truffle-hello-world

● Tell truffle to initialize the project directory

> truffle init

● Note that there are lots more templates / scaffolds that we’ll be exploring
later...

EXERCISE - TRUFFLE PROJECT STRUCTURE
● Open the project in your IDE (Code, Atom, Sublime, etc) and you should

see following:

EXERCISE - CREATING A NEW CONTRACT
● Contracts are created / stored in the contracts directory
● Create a new contract via the following command (or via the IDE):

> truffle create contract HelloWorld

● This will also scaffold a basic Solidity contract with a constructor:

> cat contracts/HelloWorld.sol

EXERCISE - COMPILING CONTRACTS
● In the contracts directory paste the contents of the following:

○ https://pastebin.com/ziEfNLnA

//SPDX-License-Identifier: MIT
pragma solidity >= 0.5.0 < 0.7.0;

contract HelloWorld {
string public x;

function setX(string memory newX) public {
x = newX;

}

function getX() public view returns (string memory) {
return x;

}
}

https://pastebin.com/ziEfNLnA

EXERCISE - COMPILE THE CONTRACT
● When you are ready to build your contracts run:

> truffle compile

● Note that if you see an error related to a mismatch in compiler version we
can specify the appropriate version in the compilers section of
truffle-config.js and Truffle will pull down the correct version

● Truffle will compile your contracts and create contract artifacts in the
build/contracts directory

● These artifact files will be used later to make it easy to programmatically
interact with your contracts

EXERCISE - DEPLOYING & INTERACTING WITH
YOUR CONTRACTS

EXERCISE - USING TRUFFLE DEVELOP
● Truffle has a built-in personal blockchain (based on ganache) that can be

used for testing
● Note that its completely local to your system and does not interact with

any public Ethereum network
● Accessed via the following command:

> truffle develop

EXERCISE - USING TRUFFLE DEVELOP
● Creates ten temporary accounts (and their associated private keys) that

can be used when interacting with the blockchain...

EXERCISE - DEPLOYING YOUR CONTRACTS
● Write migration files and place them in the migrations directory
● Modify truffle-config.js to include the configuration for the network to

which you want to deploy (note that truffle develop will automatically
detect)

● Initiate the migration with the following command:

truffle(develop)> migrate

EXERCISE - ADDING A MIGRATION SCRIPT
● At the moment we’re only migrating the Migrations contract
● To also migrate HelloWorld, we’ll need to add an additional script
● In the migrations directory, create the following: 2_deploy_contracts.js
● Copy and paste the contents of 1_initial_migration.js and specify the

HelloWorld contract as follows:

var HelloWorld = artifacts.require("./HelloWorld.sol");

module.exports = function(deployer) {
 deployer.deploy(HelloWorld);
};

EXERCISE - INTERACTING WITH THE CONTRACT
● There’s a LOT that can be done from the console (as it mounts a web3.js

instance), but for now, we’ll just use it to interact with our HelloWorld
contract

● Try the following:

truffle(develop)> let instance = await HelloWorld.deployed()
truffle(develop)> instance.setX('Hello World')
truffle(develop)> instance.getX()

EXERCISE - INTERACTING WITH THE CONTRACT
● Try updating the contract return string…”Hello <Your Name>”
● Migrate again...what happens?
● You’ll need to use a --reset to force an update

truffle(develop)> migrate --reset

● Note that we’ll be addressing development workflow / lifecycle in the next
class(es)

TRUFFLE BOXES 🎁

TRUFFLE BOXES - OVERVIEW 🎁
● Boilerplates for both learning and kick starting new projects (e.g.

sample contracts, front-ends, complete sample DApps)
● 3 flavors...

○ Official
○ Partner
○ Community

● Full list at https://www.trufflesuite.com/boxes
● Moving towards a monthly release cadence (Aave, RSK, etc)

> truffle unbox <box-name>

https://www.trufflesuite.com/boxes

TRUFFLE BOXES - THEMES 🎁
● Getting Started

○ MetaCoin
○ Drizzle

● Tokenization
○ Etherplate
○ Cheshire
○ TutorialToken

● Front-end focused
○ React
○ Drizzle-vue-box
○ AngularTruffleDApp

HANDS ON - TRUFFLE TEAMS + METACOIN

EXERCISE - METACOIN BOX
● Unbox the Truffle Metacoin Box
● Review in the context of Truffle Teams…

○ Build
○ Sandbox
○ Deploy
○ Send a Transaction
○ Debug

SUMMARY & NEXT STEPS

SUMMARY
● Explore Decentralized Applications (aka DApps) through a developer lens
● Introduced the Truffle Suite
● Explored the DApp Development Lifecycle
● Got a little Hands On

NEXT STEPS
● Get in touch :) Questions, feedback, slides, etc...

○ kevin@trufflesuite.com

● Contributing…
○ https://github.com/trufflesuite

● TruffleCon 2020
○ https://www.trufflesuite.com/trufflecon2020

mailto:kevin@trufflesuite.com
https://github.com/trufflesuite
https://www.trufflesuite.com/trufflecon2020

Q&A

